
Miscellany Version 1.0 25-1

25
MISCELLANY
 Demonstration Program: Miscellany

Notification From Applications in the Background

The Need for the Notification Manager

Applications running in the background sometimes need to communicate information to the user, and need
to be certain that the user has actually received that information. The Notification Manager provides for
this requirement.

Elements of a Notification

The Notification Manager creates notifications. A notification comprises one or more of five possible
elements, which occur in the following sequence:

• An mark appears against the name of the target application in the Mac OS 8/9 Application menu.

This mark is intended to prompt the user to switch the marked application to the foreground. The
mark only appears while the application posting the notification remains in the background. It is
replaced by the familiar mark when that application is brought to the foreground.

• The Mac OS 8/9 Application menu begins alternating between the target application's icon and the
foreground application's icon, or the Apple menu title begins alternating between the target
application's icon and the Apple icon.

The location of the icon alternation in the Mac OS 8/9 menu bar is determined by the posting
application's mark (if any). If the application posting the notification is marked by either a mark
or a mark in the Mac OS 8/9 Application menu, the Application menu title alternates; otherwise
the Apple menu title alternates.

Note that several applications might post notifications, so there might be a series of alternating
icons.

• On Mac OS 8/9, the Sound Manager plays a sound.

The application posting the notification can request that the system alert sound be used or it can
specify its own sound by passing the Notification Manager a handle to a 'snd ' resource.

• On Mac OS 8.6, a modal alert appears, and the user dismisses it (by clicking on the Cancel button).
On Mac OS 9.x a floating window appears, allowing the user to continue working in any running
application without first dismissing the notification window. On Mac OS X, a system movable
modal alert, which remains in front of all other windows, appears.

The application posting the notification specifies the text for the modal alert/floating
window/system movable modal alert.

25-2 Version 1.0 Miscellany

• A response function, if specified, executes.

A response function can be used to remove the notification request from the notification queue (see
below) or to perform other processing. For example, it can be used to set a global variable to record
that the notification was received.

Notifications in Action

Overview

The Notification Manager is automatically initialised at system startup.

To present the user with a notification, you create a notification request and install it into the notification
queue, which is a standard Macintosh queue. The Notification Manager presents the notification to the
user at the earliest possible time.

When appropriate (that is, in the response function or when your application returns to the foreground),
you can remove the notification request from the notification queue.

Creating a Notification Request

The Notification Structure

When installing a request into the notification queue, your application must supply a pointer to a
notification structure, a static and nonrelocatable structure of type NMRec which indicates the type of
notification required. Each entry in the notification queue is, in fact, a notification structure. The
notification structure is as follows:

struct NMRec
{
 QElemPtr qLink; // Address of next element in queue. (Used internally.)
 short qType; // Type of data. (8 = nmType).
 short nmFlags; // (Reserved.)
 long nmPrivate; // (Reserved.)
 short nmReserved; // (Reserved.)
 short nmMark; // Application to identify with diamond mark.
 Handle nmIcon; // Handle to small icon.
 Handle nmSound; // Handle to sound structure.
 StringPtr nmStr; // Pointer to string to appear in the notification.
 NMUPP nmResp; // Pointer to response function.
 long nmRefCon; // Available for application use.
};
typedef struct NMRec NMRec;
typedef NMRec *NMRecPtr;

Field Descriptions:

To set up a notification request, you need to fill in at least the first six of the following fields:

qType The type of operating system queue. Set to nmType (8).

nmMark Specifies whether to place a ♦ mark next to the name of the application in the Mac OS 8/9
Application menu. 0 means no mark appears. 1 means the mark appears. Applications should
ordinarily set this field to 1.

nmIcon A handle to an icon family containing a small colour icon that is to alternate periodically in the
menu bar. If this field is set to NULL, no icon appears. The handle must be non-purgeable.

nmSound A handle to a sound resource. If this field is set to NULL, no sound is played. If this field is set to
-1, the system alert sound is played. The handle must be non-purgeable.

nmStr Pointer to a string that appears in the alert/floating window/system movable modal alert. If this
field is set to NULL, no alert/ floating window/system movable modal alert appears. Your
application should not dispose of this storage until it removes the notification request.

Miscellany Version 1.0 25-3

nmResp Universal procedure pointer to a response function. If this field is set to NULL, no response
function executes when the notification is posted. If this field is set to -1, a pre-defined function
removes the notification request when it has completed. However, on Mac OS 8/9, if either
nmMark or nmIcon is non-zero, do not set nmResp to -1, because the Notification Manager will
remove the mark or the icon before the user sees it.

If you do not need to do any processing in response to the notification, you should set this field
to NULL. If you supply a universal procedure pointer to your own response function, the
Notification Manager passes your response function one parameter, namely, a universal
procedure pointer to your notification structure. Accordingly, this is how you would declare a
response function having the name theResponse:

void theResponse(NMUPP nmStructurePtr);

You can use response functions to remove notification requests from the notification queue, free
any memory1, or set a global variable in your application to record that the notification was
posted.

nmRefCon For your application's own use.

Installing a Notification Request

NMInstall is used to add a notification request to the notification queue. The following is an example call:

osError = NMInstall(¬ificationStructure);

Before calling NMInstall, you should make sure that your application is running in the background. If your
application is in the foreground, you simply use standard alert methods, rather than the Notification
Manager, to gain the user's attention.

Removing a Notification Request

NMRemove is used to remove a notification request from the notification queue. The following is an example
call:

osError = NMRemove(¬ificationStructure);

You can remove requests at any time, either before or after the notification actually occurs.

On Mac OS 9.x and Mac OS X the user does not have to dismiss the notification before being able to
activate the application. For this reason, when your application is running on Mac OS 9.x or Mac OS X,
may wish to have it explicitly cancel the notification using NMRemove when the application becomes active.

Progress Bars and Scanning for Command-Period Key-Down Events and Mouse-
Down Events

Progress Bars

Operations within an application which tie up the machine for relatively brief periods of time should be
accompanied by a cursor shape change to the watch cursor or perhaps to an animated cursor (Mac OS 8/9)
or by an invocation of the wait cursor (Mac OS X). On the other hand, lengthy operations should be
accompanied by the display of a progress indicator.

The progress indicator control was described at Chapter 14. A progress indicator created using this control
may be determinate or indeterminate. Determinate progress indicators show how much of the operation has
been completed. Indeterminate progress indicators show that an operation is occurring but does not
indicate its duration. Ordinarily, progress indicators should be displayed within a dialog.

1 Note that an nmResp value of -1 does not free the memory block containing the queue element; it merely removes that
element from the notification queue.

25-4 Version 1.0 Miscellany

As stated at Chapter 2, your application should allow the user to cancel a lengthy operation using the
Command-period key combination.

Scanning for Command-Period Key-Down Events

The function CheckEventQueueForUserCancel may be used to scan the event queue for Command-period key-
down events, and will return true if a Command-period event is found. If true is returned, the lengthy
operation should be terminated and the dialog displaying the progress indicator should be closed.

Soliciting a Colour Choice From the User — The Color Picker
The Color Picker Utilities provide your application with:

• A standard dialog, called the Color Picker, for soliciting a colour choice from the user.

• Functions for converting colour specifications from one colour model to another.

Preamble - Colour Models

In the world of colour, three main colour models are used to specify a particular colour. These are the
RGB (red, green, blue) model, the CYMK (cyan, magenta, yellow, black) model, and the HLS or HSV
(hue, lightness, saturation, or hue, saturation, value) models.

RGB Model

The RGB model is used where light-produced colours are involved, as in the case of a television set,
computer monitor, or stage lighting. In this model, the three primary colours involved (red, green, and
blue) are said to be additive because, the more of each colour you add, the closer the resulting colour is to
white.

CYMK Model

The CYMK model is closely associated with printing, that is, putting colour on a white page. In this
model, the three primary colours (cyan, yellow, and magenta2) are said to be subtractive because, the more
of each colour you add, the closer the resulting colour is to black. (The inclusion of black in the model
accounts for the fact that the colours of printer's inks may vary slightly from true cyan, yellow, and
magenta, meaning that a true black may not be achievable with just a CYM model.)

HLS and HSV Models

The HLS and HSV models separate colour (that is, hue) from saturation and brightness. Saturation is a
measure of the amount of white in a colour (the less white, the more saturated the colour). Lightness is the
measure of the amount of black in a colour. (The less black, the lighter the colour). The amount of black
is specified by the lightness (L) value in the HLS model and by the value (V) value in the HSV model.

The HSL/HLV model may be represented diagrammatically by the HSL/HLV colour cone shown at Fig 1.
In this colour cone, hue is represented by an angle between 0˚ and 360˚.

2 Cyan, magenta, and yellow are the complements of red, green, and blue.

Miscellany Version 1.0 25-5

FIG 1 - HSL/HSV COLOUR CONE

BLACK

RED

BLUE

GREEN WHITE

GREYS

INCREASING SATURATION

INCREASING
LIGHTNESS

INCREASING
HUE

0°

The Color Picker

The Color Picker allows the user to specify a colour using either the RGB, CMYK, HLS, or HSV, models.

Using the Color Picker RGB Mode

Fig 2 shows the Color Picker in RGB mode. The desired red, green and blue values may be set using the
three slider controls or may be entered directly into the edit text fields on the right of the sliders.

FIG 2 - COLOR PICKER DIALOG IN RGB MODE

Using the Color Picker in HSV Mode

Fig 3 shows the Color Picker in HSV mode. Hue is specified by an angle, which may be entered at Hue
Angle:. Saturation is specified by percentage, which may be entered at Saturation:. Value is also specified
by a percentage, which may be entered at Value: Alternatively, hue and saturation may be selected
simultaneously by clicking at the desired point within the coloured disc, and value may be set with the
slider control.

To relate Fig 3 to Fig 1, the coloured disc at Fig 3 may be considered as the HSL/HSV cone as viewed
from above. The value slider control can then be conceived of as moving the disc up or down the axis of
the cone from the apex (black) to the base (white).

25-6 Version 1.0 Miscellany

FIG 3 - COLOR PICKER DIALOG IN HLS MODE

Invoking the Color Picker

The Color Picker is invoked using the GetColor function:

Boolean GetColor(Point where,ConstStr255Param prompt,const RGBColor *inColor,
 RGBColor *outColor);

Returns: A Boolean value indicating whether the user clicked on the OK button or Cancel button.

where Dialog's upper-left corner. (0,0) causes the dialog to positioned centrally on the main
screen.

prompt A prompt string, which is displayed in the upper left corner of the main pane in the dialog.

inColor The starting colour, which the user may want for comparison, and which is displayed
against Original: in the top right corner of the dialog.

outColor Initially set to equal inColor. Assigned a new value when the user picks a colour. The
colour stored in this parameter is displayed at the top right of the dialog against New:.)

If the user clicks the OK button in the Color Picker dialog, your application should adopt the outColor value
as the colour chosen by the user. If the user clicks the Cancel button, your application should assume that
the user has decided to make no colour change, that is, the colour should remain as that represented by the
inColor parameter.

Coping With Multiple Monitors

Overview

In a multi-monitor system, the use may specify which of the attached monitors is to be the main screen
(that is, the screen containing the menu bar) and to set the position of the other screen, or screens, relative
to the main screen.

The maximum number of colours capable of being displayed by a given Macintosh at the one time is
determined by the video capability of that particular Macintosh. The maximum number of colours capable
of being displayed on a given screen at the one time depends on settings made by the user. In a multi-
monitor environment, therefore, it is possible for each screen to be set to a different pixel depth.

In more technical terms, the user's settings set the pixel depth of a particular video device. A brief review
of the subject of video devices is therefore appropriate at this point.

Video Devices Revisited

As stated at Chapter 11:

• A graphics device is anything into which QuickDraw can draw, a video device (such as a plug-in
video card or a built-in video interface) is a graphics device that controls screens, QuickDraw stores
information about video devices in GDevice structures, the system creates and initialises a GDevice

Miscellany Version 1.0 25-7

structure for each video device found during start-up all structures are linked together in a list called
the device list, and the global variable DeviceList holds a handle to the first structure in the list.

• At any given time, one, and only one, graphics device is the current device3, that is, the one in
which the drawing is taking place. A handle to the current device's GDevice structure is placed in the
global variable TheGDevice.

By default, the GDevice structure corresponding to the first video device found at start up is marked as the
(initial) current device, and all other graphics devices in the list are initially marked as inactive. When the
user moves a window to, or creates a window on, another screen, and your application draws into that
window, QuickDraw automatically makes the video device for that screen the current device and stores
that information in TheGDevice. As QuickDraw draws across a user's video devices, it keeps switching to
the GDevice structure for the video device on which it is actively drawing.

Requirements of the Application

Image Optimisation

To draw a particular graphic, your application may have to call different drawing functions for that graphic
depending on the characteristics of the video device intersecting your window's drawing region, the aim
being to optimise the appearance of the image regardless of whether it is being displayed on, say, a
grayscale device or a colour device. Recall from Chapter 11 that when QuickDraw displays a colour on a
grayscale screen, it computes the luminance, or intensity of light, of the desired colour and uses that value
to determine the appropriate gray value to draw. It is thus possible that, for example, two overlapping
objects drawn in two quite different colours on a colour screen may appear in the same shade of gray on a
grayscale screen. In order for the user to differentiate between these two objects on a grayscale screen, you
would need to provide an alternative drawing function which draws the two objects in different shades of
gray on grayscale screens.

The QuickDraw function DeviceLoop is central to the matter of optimising the appearance of your images.
DeviceLoop searches for graphics devices which intersect your window's drawing region, informing your
application of each graphics device it finds and providing your application with information about the
current device's attributes. Armed with this information, your application can then invoke whichever of its
drawing functions is optimised for those particular attributes.

DeviceLoop's second parameter is a pointer to an application-defined (callback) function. That function
must be defined like this:

void myDrawingFunction(short depth,short deviceFlags,GDHandle targetDevice,
 long userData)

DeviceLoop calls this function for each dissimilar video device it finds. If it encounters similar devices (that
is, devices having the same pixel depth, colour table seeds, etc.) it will make only one call to
myDrawingFunction, pointing to the first such device encountered.

Other Requirements — Classic Event Model Applications

Other requirements, for Classic event model applications only, are as follows:

• Window Zooming. If the user drags a window currently zoomed to the user state so that it spans two
screens, and then clicks the zoom box to zoom the window to the standard state, the window should
be zoomed to the standard state on the screen which contained the largest area of the window before
the zoom box was clicked. The function ZoomWindowIdeal, which was introduced with Mac OS 8.5,
zooms windows in accordance with this requirement.

• Window Dragging. In Carbon, if NULL is passed in DragWindow's boundsRect parameter, the bounding
rectangle limiting the area in which the window can be dragged is set to the desktop region, which,
in a multi-monitors environment, includes all screen real estate less the menu bar.

3 The current device is sometimes referred to as the active device.

25-8 Version 1.0 Miscellany

• Window Sizing. In a multi-monitor environment, if you pass a constraining rectangle in
ResizeWindow's sizeContraints parameter, that rectangle should be based on the bounding rectangle of
the desktop region. You should call GetGrayRgn to get a handle to the desktop region and then call
GetRegionBounds to get that region's bounding rectangle.

Constraining a Window to One Screen

In a multi-monitors environment, a call to the function ConstrainWindowToScreen enables you to constrain a
window's movement and resizing so that it is contained entirely on a single screen.

Help Tags
Help tags are the equivalent, on Mac OS X, of Help balloons on Mac OS 8/9, and appear when the cursor
hovers over a user interface element. Carbon also supports Help tags on Mac OS 8/9; however, you may
consider that, compared with Help balloons, their "look" is somewhat at odds with the Platinum
appearance.

Human Interface Guidelines

Guidelines for Help tags are at http://developer.apple.com/techpubs/macosx/Carbon/pdf/UsingHelpTags.pdf.

Creating Help Tags

You create a Help tag for, say, a control by filling in the fields of an HMHelpContentRec structure and its
associated HMHelpContent structure and passing the control reference and the address of the HMHelpContentRec
structure in a call to the function HMSetControlHelpContent.

Data Types

The an HMHelpContentRec and HMHelpContent structures are as follows:

struct HMHelpContentRec
{
 SInt32 version;
 Rect absHotRect;
 HMTagDisplaySide tagSide;
 HMHelpContent content[2];
};
typedef struct HMHelpContentRec HMHelpContentRec;
typedef HMHelpContentRec *HMHelpContentPtr;

struct HMHelpContent
{
 HMContentType contentType;
 union
 {
 CFStringRef tagCFString; // A CFStringRef reference.
 Str255 tagString; // A Pascal string.
 HMStringResType tagStringRes; // A 'STR#' resource ID and index.
 TEHandle tagTEHandle; // A TextEdit handle. (Mac OS 8/9 only.)
 SInt16 tagTextRes; // A 'TEXT'/'styl' resource ID. (Mac OS 8/9 only.)
 SInt16 tagStrRes; // A 'STR ' resource ID
 } u;
};
typedef struct HMHelpContent HMHelpContent;

The HMStringResType structure is used to specify the resource ID and index when Help tag content is
sourced from a 'STR#' resource:

struct HMStringResType
{
 short hmmResID; // Resource ID of 'STR#' resource.
 short hmmIndex; // 'STR#' resource index.
};

Miscellany Version 1.0 25-9

typedef struct HMStringResType HMStringResType;

Note that the content field of the HMHelpContentRec structure is a two-element array. The second element
allows you to provide an expanded version of the Help tag message when the user presses the Command
key.

Constants

Typical constants relevant to the tagSide field of the HMHelpContentRec structure are as follows:

Constant Value Description
kHMDefaultSide 0 System default location.
kHMOutsideTopScriptAligned 1 Above, aligned with left or right depending on system script.
kHMOutsideLeftCenterAligned 2 To the left, centered vertically.
kHMOutsideRightCenterAligned 4 To the right, centered vertically.
kHMOutsideTopLeftAligned 5 Above, aligned with left.
kHMOutsideTopRightAligned 6 Above, aligned with right.
kHMOutsideLeftTopAligned 7 To the left, aligned with top.
kHMOutsideLeftBottomAligned 8 To the left, aligned with bottom.
kHMOutsideBottomLeftAligned 9 Below, aligned with left.
kHMOutsideBottomRightAligned 10 Below, aligned with right.

Constants relevant to the content field of the HMHelpContentRec structure are as follows:

Constant Value Description
kHMMinimumContentIndex 0 First element of content array.
kHMMaximumContentIndex 1 Second element of content array.

Constants relevant to the contentType field of the HMHelpContent structure are as follows:

Constant Value Description
kHMNoContent 'none' No content.
kHMCFStringContent 'cfst' Content sourced from a CFStringRef reference.
kHMPascalStrContent 'pstr' Content sourced from a Pascal string.
kHMStringResContent 'str#' Content sourced from a 'STR#' resource.
kHMTEHandleContent 'txth' Content sourced from a TexEdit handle. (Mac OS 8/9 only.)
kHMTextResContent 'text' Content sourced from 'TEXT'/'styl' resources. (Mac OS 8/9 only.)
kHMStrResContent 'str ' Content sourced from a 'STR ' resource.

Help Tags for Windows

You create a Help tag for a window in the same way as you do for a control, except that:

• You call the function HMSetWindowHelpContent instead of HMSetControlHelpContent.

• You assign the window's port rectangle, converted to global coordinates, to the absHotRect field of
the HMHelpContentRec structure.

• You must call HMSetControlHelpContent again whenever the window size or position changes to
ensure that the hot rectangle coordinates are updated.

Help Tags for Menus

You create Help tags for menu titles and items in the same way as you do for a control, except that you call
the function HMSetMenuItemHelpContent instead of HMSetControlHelpContent.

Note

At the time of writing, menu title and menu item Help tags were not supported by Carbon or CarbonLib.
However, future support was planned.

25-10 Version 1.0 Miscellany

Setting the Delay Before Tag Display

You can set the delay, in milliseconds, before a tag opens by calling the function HMSetTagDelay.

Enabling and Disabling Help Tags

You can enable and disable help tags using the function HMSetHelpTagsDisplayed, and you can determine
whether Help tags are currently enabled using the function HMAreHelpTagsDisplayed.

Ensuring Compatibility with the Operating Environment
If your application is to run successfully in the software and hardware environments that may be present in
a wide range of Macintosh models, it must be able to acquire information about a number of machine-
dependent features and, where appropriate, act on that information.

Getting Operating Environment Information - The Gestalt Function

The Gestalt function may be used to acquire a wide range of information about the operating environment.

OSErr Gestalt(OSType selector,long *response);

Returns: Error code. (0 = no error.)

selector Selector code.

response 4-byte return result which provides the requested information. When all four bytes are not
needed, the result is expressed in the low-order byte.

The types of information capable of being retrieved by Gestalt are as follows:

• The type of machine.

• The version of the System file currently running.

• The type of CPU.

• The type of keyboard attached to the machine.

• The type of floating-point unit (FPU) installed, if any.

• The type of memory management unit (MMU).

• The size of the available RAM.

• The amount of available virtual memory.

• The versions and features of various drivers and managers.

Gestalt Selectors

To use Gestalt, you pass it a selector, which specifies exactly what information your application is
seeking. Of those selectors which are pre-defined by the Gestalt Manager, there are two sub-types:

• Environmental Selectors. Environmental selectors are those which return information about the
existence, or otherwise, of a feature. This information can be used by your application to guide its
actions. Some examples of the many available environmental selectors, and the information
returned in the response parameter, are as follows:

Selector Information Returned
gestaltFPUType FPU type.
gestaltKeyboardType Keyboard type.
gestaltPhysicalRAMSize Physical RAM size.
gestaltQuickdrawVersion QuickDraw version.
gestaltTextEditVersion TextEdit version.

Miscellany Version 1.0 25-11

• Informational Selectors. Informational selectors are those which provide information which should
be used for the user's enlightenment only. This information should never be used as proof positive
of some feature's existence, nor should it be used to guide your application's actions.
gestaltMachineType is an example of an informational selector.

Gestalt Responses

In almost all cases, the last few characters in the selector's name form a suffix which indicates the type of
value that will be returned in the response parameter. The following shows the meaningful suffixes:

Suffix Returned Value
Attr A range of 32 bits, the meaning of which must be determined by comparison with a list of constants.
Count A number indicating how many of the indicated type of items exist.
Size A size, usually in bytes.
Table Base address of a table.
Type An index describing a particular type of feature.
Version A version number. Implied decimal points may separate digits of the returned value. For example, a value of

0x0910 returned in response to the gestaltSystemVersion selector means that system software version 9.1.0
is present.

Using Gestalt — Examples

The header file Gestalt.h defines and describes Gestalt Manager selectors, together with the many constants
which may be used to test the response parameter.

Example 1

For example, when Gestalt is used to check whether Version 1.3 or later of Color QuickDraw is present,
the value returned in the response parameter may be compared with gestalt32BitQD13 as follows:

OSErr osErr
SInt32 response;
Boolean colorQuickDrawVers13Present = true;

osErr = Gestalt(gestaltQuickdrawVersion,&response);
if(osErr == noErr)
{
 if(response < gestalt32BitQD13)
 colorQuickDrawVers13Present = false;
}

Example 2

Many constants in Gestalt.h represent bit numbers. In this example, the value returned in the response
parameter is tested to determine whether bit number 5 (gestaltHasSoundInputDevice) is set:

OSErr osErr;
SInt32 response;
Boolean hasSoundInputDevice = false;

osErr = Gestalt(gestaltSoundAttr,&response);
if(osErr == noErr)
 gHasSoundInputDevice = BitTst(&response,31 - gestaltHasSoundInputDevice);

Note that the function BitTst is used to determine whether the specified bit is set. Bit numbering with
BitTst is the opposite of the usual MC680x0 numbering scheme used by Gestalt. Thus the bit to be tested
must be subtracted from 31. This is illustrated in the following:

25-12 Version 1.0 Miscellany

Bit numbering as used in BitTst
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Bit as numbered in MC69000 CPU operations, and used by Gestalt
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

gestaltHasSoundInputDevice = 5
31 - 5 = 26

Carbon and Available APIs

CarbonLib and the Underlying Mac OS 8/9 System Software

CarbonLib (the implementation of the Carbon API for Mac OS 8/9) does not, in general, implement new
APIs on old systems. It is basically a "pass-through" library that re-exports what is available on the
underlying system software.

Thus, if your application calls a function introduced with, say, Mac OS 9.0, it will compile correctly
because that function is, by definition, part of the Carbon API (all new function introduced from Mac OS
8.5 onwards are supported by Carbon); however, if the application is run on Mac OS 8.6, the call to that
function will fail.

There are a few exceptions to this rule, for example, the menu, control, and window property APIs.

Interpreting Universal Headers Comments

When you run a CFM application on Mac OS X, CFM follows the same rules for runtime linkages as it
does on Mac OS 8/9. Since the application links against a library named CarbonLib, there needs to be a
CFM library named CarbonLib somewhere on Mac OS X.

That library is /System/Library/CFM Support/CarbonLib. It exports all of the APIs as does CarbonLib on
Mac OS 8/9, plus some APIs that are only implemented on Mac OS X. (Those exports, incidentally, are
not the real implementations but simply glue which transfers control from the CFM library to the Mach-O
frameworks, where the APIs are really implemented. (Frameworks are like Mac OS 8/9 shared libraries.))

In the Universal Headers, a comment like:

CarbonLib: in CarbonLib 1.1 and later

means that the API is implemented in CarbonLib for Mac OS 8/9 and exported from the CarbonLib library
on Mac OS X. This comment:

CarbonLib: in CarbonLib on Mac OS X

means that the API is not implemented in CarbonLib for Mac OS 8/9 but is still exported from the
CarbonLib library on Mac OS X. The real determinant of whether an API is available in
Carbon.framework is this comment:

Mac OS X: in version 10.0 or later

If the comment in CarbonLib on Mac OS X applies to a function called in your application, you must add the
stub library CarbonFrameworkLib to the CodeWarrior project.

T-Vector Tests

In Carbon, the recommended method for checking the availability of a routine is to check its T-Vector
(transition vector) directly, as in the following example

if((UInt32) CreateStandardSheet == (UInt32) kUnresolvedCFragSymbolAddress)
 // CreateStandardSheet is not available. Do this.
else
 // Do this.

Miscellany Version 1.0 25-13

Main Notification Manager Data Types and Functions

Data Types

Notification Structure
struct NMRec
{
 QElemPtr qLink; // Next queue entry.
 short qType; // Queue type.
 short nmFlags; // (Reserved.)
 long nmPrivate; // (Reserved.)
 short nmReserved; // (Reserved.)
 short nmMark; // Item to mark in Apple menu.
 Handle nmIcon; // Handle to small icon.
 Handle nmSound; // Handle to sound structure.
 StringPtr nmStr; // String to appear in notification.
 NMUPP nmResp; // Pointer to response function.
 long nmRefCon; // For application use.
};
typedef struct NMRec NMRec;
typedef NMRec *NMRecPtr;

Functions

Add Notification Request to the Notification Queue
OSErr NMInstall(NMRecPtr nmReqPtr);

Remove Notification Request from the Notification Queue
OSErr NMRemove(NMRecPtr nmReqPtr);

Relevant Process Manager Data Types and Functions

Data Types

Process Serial Number
struct ProcessSerialNumber
{
 unsigned long highLongOfPSN;
 unsigned long lowLongOfPSN;
};

Functions

Getting Process Serial Numbers
OSErr GetCurrentProcess(ProcessSerialNumber *PSN);
OSErr GetFrontProcess(ProcessSerialNumber *PSN);

Comparing Two Process Serial Numbers
OSErr SameProcess(const ProcessSerialNumber *PSN1,const ProcessSerialNumber *PSN2,
 Boolean *result);

Relevant Event Manager Function

Check For Command-Period
Boolean CheckEventQueueForUserCancel(void);

25-14 Version 1.0 Miscellany

Relevant Color Picker Utilities Function
Boolean GetColor(Point where,ConstStr255Param prompt,const RGBColor *inColor,
 RGBColor *outColor);

Relevant QuickDraw Function

Drawing Across Multiple Video Devices
void DeviceLoop(RgnHandle drawingRgn,DeviceLoopDrawingUP drawingProc,long userData,
 DeviceLoopFlags flags);

Relevant Window Manager Function
OSStatus ConstrainWindowToScreen(WindowRef inWindowRef,WindowRegionCode inRegionCode,
 WindowConstrainOptions inOptions,const Rect *inScreenRect,
 Rect *outStructure);

Main Help Package Constants, Data Types, and Functions

Constants

Content Type
kHMNoContent = FOUR_CHAR_CODE('none')
kHMCFStringContent = FOUR_CHAR_CODE('cfst')
kHMPascalStrContent = FOUR_CHAR_CODE('pstr')
kHMStringResContent = FOUR_CHAR_CODE('str#')
kHMTEHandleContent = FOUR_CHAR_CODE('txth')
kHMTextResContent = FOUR_CHAR_CODE('text')
kHMStrResContent = FOUR_CHAR_CODE('str ')

Tag Display Side
kHMDefaultSide = 0
kHMOutsideTopScriptAligned = 1
kHMOutsideLeftCenterAligned = 2
kHMOutsideBottomScriptAligned = 3
kHMOutsideRightCenterAligned = 4
kHMOutsideTopLeftAligned = 5
kHMOutsideTopRightAligned = 6
kHMOutsideLeftTopAligned = 7
kHMOutsideLeftBottomAligned = 8
kHMOutsideBottomLeftAligned = 9
kHMOutsideBottomRightAligned = 10
kHMOutsideRightTopAligned = 11
kHMOutsideRightBottomAligned = 12
kHMOutsideTopCenterAligned = 13
kHMOutsideBottomCenterAligned = 14
kHMInsideRightCenterAligned = 15
kHMInsideLeftCenterAligned = 16
kHMInsideBottomCenterAligned = 17
kHMInsideTopCenterAligned = 18
kHMInsideTopLeftCorner = 19
kHMInsideTopRightCorner = 20
kHMInsideBottomLeftCorner = 21
kHMInsideBottomRightCorner = 22
kHMAbsoluteCenterAligned = 23

For HMHelpContentRec.content
kHMMinimumContentIndex = 0
kHMMaximumContentIndex = 1

Data Types
typedef UInt32 HMContentType;
typedef SInt16 HMTagDisplaySide;

Miscellany Version 1.0 25-15

HelpContent
struct HMHelpContent
{
 HMContentType contentType;
 union
 {
 CFStringRef tagCFString;
 Str255 tagString;
 HMStringResType tagStringRes;
 TEHandle tagTEHandle;
 SInt16 tagTextRes;
 SInt16 tagStrRes;
 } u;
};
typedef struct HMHelpContent HMHelpContent;

HMHelpContentRec
struct HMHelpContentRec
{
 SInt32 version;
 Rect absHotRect;
 HMTagDisplaySide tagSide;
 HMHelpContent content[2];
};
typedef struct HMHelpContentRec HMHelpContentRec;
typedef HMHelpContentRec *HMHelpContentPtr;

HMStringResType
struct HMStringResType
{
 short hmmResID;
 short hmmIndex;
};
typedef struct HMStringResType HMStringResType;

Functions

Installing and Retrieving Content
OSStatus HMSetControlHelpContent(ControlRef inControl,const HMHelpContentRec *inContent);
OSStatus HMGetControlHelpContent(ControlRef inControl,HMHelpContentRec *outContent);
OSStatus HMSetWindowHelpContent(WindowRef inWindow,const HMHelpContentRec *inContent);
OSStatus HMGetWindowHelpContent(WindowRef inWindow,HMHelpContentRec *outContent);
OSStatus HMSetMenuItemHelpContent(MenuRef inMenu,MenuItemIndex inItem,
 const HMHelpContentRec *inContent);
OSStatus HMGetMenuItemHelpContent(MenuRef inMenu,MenuItemIndex inItem,
 HMHelpContentRec *outContent);

Enabling and Disabling Help Tags
Boolean HMAreHelpTagsDisplayed(void);
OSStatus HMSetHelpTagsDisplayed(Boolean inDisplayTags);

Setting and Getting Tag Delay
OSStatus HMSetTagDelay(Duration inDelay);
OSStatus HMGetTagDelay(Duration *outDelay);

Displaying Tags
OSStatus HMDisplayTag(const HMHelpContentRec *inContent);

Relevant Gestalt Manager Function
OSErr Gestalt(OSType selector,long *response);

25-16 Version 1.0 Miscellany

Demonstration Program Miscellany Listing
// ***
// Miscellany.h CARBON EVENT MODEL
// ***
//
// This program demonstrates:
//
// • The use of the Notification Manager to allow an application running in the background to
// to communicate with the foreground application.
//
// • The use of the determinate progress bar control to show progress during a time-
// consuming operation, together with scanning the event queue for Command-period key-down
// events for the purpose of terminating the lengthy operation before it concludes of its
// own accord.
//
// • The use of the Color Picker to solicit a choice of colour from the user.
//
// • Image drawing optimisation in a multi-monitors environment.
//
// • Help tags for controls and windows with minimum and maximum content.
//
// The program utilises the following resources:
//
// • A 'plst' resource.
//
// • An 'MBAR' resource, and 'MENU' resources for Apple, File, Edit and Demonstration menus
// (preload, non-purgeable).
//
// • A 'DLOG' resource (purgeable), and associated 'DITL', 'dlgx', and 'dftb' resources
// (purgeable), for a dialog box in which the progress indicator is displayed.
//
// • 'CNTL' resources (purgeable) for the progress indicator dialog.
//
// • 'icn#', 'ics4', and 'ics8' resources (non-purgeable) which contain the application icon
// shown in the Application menu during the Notification Manager demonstration.
//
// • A 'snd ' resource (non-purgeable) used in the Notification Manager demonstration.
//
// • A 'STR ' resource (non-purgeable) containing the text displayed in the alert box invoked
// by the Notification Manager.
//
// • 'STR#' resources (purgeable) containing the label and narrative strings for the
// notification-related alert displayed by Miscellany and the minimum and maximum Help tag
// content.
//
// • A 'SIZE' resource with the acceptSuspendResumeEvents, canBackground,
// doesActivateOnFGSwitch, and isHighLevelEventAware flags set.
//
// ***

// …… includes

#include <Carbon.h>

// ……… defines

#define rMenubar 128
#define mAppleApplication 128
#define iAbout 1
#define mFile 129
#define iQuit 12
#define mDemonstration 131
#define iNotification 1
#define iProgress 2
#define iColourPicker 3
#define iMultiMonitors 4
#define iHelpTag 5

Miscellany Version 1.0 25-17

#define rWindow 128
#define rDialog 128
#define iProgressIndicator 1
#define rIconFamily 128
#define rBarkSound 8192
#define rString 128
#define rAlertStrings 128
#define indexLabel 1
#define indexNarrative 2
#define rPicture 128
#define topLeft(r) (((Point *) &(r))[0])
#define botRight(r) (((Point *) &(r))[1])

// ……… function prototypes

void main (void);
void doPreliminaries (void);
OSStatus appEventHandler (EventHandlerCallRef,EventRef,void *);
OSStatus windowEventHandler (EventHandlerCallRef,EventRef,void *);
void doMenuChoice (MenuID,MenuItemIndex);

void doSetUpNotification (void);
void doPrepareNotificationStructure (void);
void doIdle (void);
void doDisplayMessageToUser (void);

void doProgressBar (void);

void deviceLoopDraw (SInt16,SInt16,GDHandle,SInt32);

void doColourPicker (void);
void doDrawColourPickerChoice (void);
char *doDecimalToHexadecimal (UInt16 n);

void doHelpTagControl (void);
void doHelpTagWindow (void);

// ***
// Miscellany.c
// ***

#include "Miscellany.h"

// …… global variables

DeviceLoopDrawingUPP gDeviceLoopDrawUPP;
WindowRef gWindowRef;
ControlRef gBevelButtonControlRef;
ProcessSerialNumber gProcessSerNum;
Boolean gMultiMonitorsDrawDemo = false;
Boolean gColourPickerDemo = false;
Boolean gHelpTagsDemo = false;
RGBColor gWhiteColour = { 0xFFFF, 0xFFFF, 0xFFFF };
RGBColor gBlueColour = { 0x6666, 0x6666, 0x9999 };

extern Boolean gNotificationInQueue;

// ** main

void main(void)
{
 MenuBarHandle menubarHdl;
 SInt32 response;
 MenuRef menuRef;
 Rect contentRect = { 100,100,402,545 };
 Rect portRect;
 Rect controlRect = { 65,10,155,100 };
 EventTypeSpec applicationEvents[] = { { kEventClassApplication, kEventAppActivated },
 { kEventClassCommand, kEventProcessCommand } };

25-18 Version 1.0 Miscellany

 EventTypeSpec windowEvents[] = { { kEventClassWindow, kEventWindowDrawContent },
 { kEventClassWindow, kEventWindowGetIdealSize },
 { kEventClassWindow, kEventWindowGetMinimumSize },
 { kEventClassWindow, kEventWindowBoundsChanged } };

 // …… do preliminaries

 doPreliminaries();

 // …… create universal procedure pointer

 gDeviceLoopDrawUPP = NewDeviceLoopDrawingUPP((DeviceLoopDrawingProcPtr) deviceLoopDraw);

 // ……… set up menu bar and menus

 menubarHdl = GetNewMBar(rMenubar);
 if(menubarHdl == NULL)
 ExitToShell();
 SetMenuBar(menubarHdl);
 DrawMenuBar();

 Gestalt(gestaltMenuMgrAttr,&response);
 if(response & gestaltMenuMgrAquaLayoutMask)
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 {
 DeleteMenuItem(menuRef,iQuit);
 DeleteMenuItem(menuRef,iQuit - 1);
 DisableMenuItem(menuRef,0);
 }
 }
 else
 {
 menuRef = GetMenuRef(mFile);
 if(menuRef != NULL)
 SetMenuItemCommandID(menuRef,iQuit,kHICommandQuit);
 }

 // ……… install application event handler and timer

 InstallApplicationEventHandler(NewEventHandlerUPP((EventHandlerProcPtr) appEventHandler),
 GetEventTypeCount(applicationEvents),applicationEvents,
 0,NULL);

 InstallEventLoopTimer(GetCurrentEventLoop(),0,1,
 NewEventLoopTimerUPP((EventLoopTimerProcPtr) doIdle),NULL,NULL);

 // ……… open window

 CreateNewWindow(kDocumentWindowClass,kWindowStandardHandlerAttribute |
 kWindowStandardDocumentAttributes,&contentRect,&gWindowRef);

 ChangeWindowAttributes(gWindowRef,0,kWindowCloseBoxAttribute);
 SetWTitle(gWindowRef,"\pMiscellany");
 RepositionWindow(gWindowRef,NULL,kWindowAlertPositionOnMainScreen);

 SetPortWindowPort(gWindowRef);
 TextSize(10);

 ShowWindow(gWindowRef);
 GetWindowPortBounds(gWindowRef,&portRect);
 InvalWindowRect(gWindowRef,&portRect);

 // …… install window event handler

 InstallWindowEventHandler(gWindowRef,
 NewEventHandlerUPP((EventHandlerProcPtr) windowEventHandler),
 GetEventTypeCount(windowEvents),windowEvents,0,NULL);

Miscellany Version 1.0 25-19

 // …… create control and help tags

 CreateBevelButtonControl(gWindowRef,&controlRect,CFSTR("Control"),
 kControlBevelButtonNormalBevel,kControlBehaviorPushbutton,
 NULL,0,0,0,&gBevelButtonControlRef);
 doHelpTagControl();
 HideControl(gBevelButtonControlRef);
 doHelpTagWindow();
 HMSetHelpTagsDisplayed(false);

 // ……… get process serial number of this process

 GetCurrentProcess(&gProcessSerNum);

 // …… run application event loop

 RunApplicationEventLoop();
}

// *** doPreliminaries

void doPreliminaries(void)
{
 MoreMasterPointers(640);
 InitCursor();
}

// *** appEventHandler

OSStatus appEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void * userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 HICommand hiCommand;
 MenuID menuID;
 MenuItemIndex menuItem;

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

 switch(eventClass)
 {
 case kEventClassApplication:
 if(eventKind == kEventAppActivated)
 {
 if(gNotificationInQueue)
 doDisplayMessageToUser();
 result = noErr;
 }
 break;

 case kEventClassCommand:
 if(eventKind == kEventProcessCommand)
 {
 GetEventParameter(eventRef,kEventParamDirectObject,typeHICommand,NULL,
 sizeof(HICommand),NULL,&hiCommand);
 menuID = GetMenuID(hiCommand.menu.menuRef);
 menuItem = hiCommand.menu.menuItemIndex;
 if((hiCommand.commandID != kHICommandQuit) &&
 (menuID >= mAppleApplication && menuID <= mDemonstration))
 {
 doMenuChoice(menuID,menuItem);
 result = noErr;
 }
 }
 break;

25-20 Version 1.0 Miscellany

 }

 return result;
}

// ** windowEventHandler

OSStatus windowEventHandler(EventHandlerCallRef eventHandlerCallRef,EventRef eventRef,
 void* userData)
{
 OSStatus result = eventNotHandledErr;
 UInt32 eventClass;
 UInt32 eventKind;
 WindowRef windowRef;
 SInt32 deviceLoopUserData;
 RgnHandle regionHdl;
 Rect portRect, positioningBounds;
 Point idealHeightAndWidth, minimumHeightAndWidth;

 eventClass = GetEventClass(eventRef);
 eventKind = GetEventKind(eventRef);

 switch(eventClass)
 {
 case kEventClassWindow:
 GetEventParameter(eventRef,kEventParamDirectObject,typeWindowRef,NULL,sizeof(windowRef),
 NULL,&windowRef);
 switch(eventKind)
 {
 case kEventWindowDrawContent:
 if(gMultiMonitorsDrawDemo)
 {
 RGBBackColor(&gWhiteColour);
 deviceLoopUserData = (SInt32) windowRef;
 regionHdl = NewRgn();
 if(regionHdl)
 {
 GetPortVisibleRegion(GetWindowPort(windowRef),regionHdl);
 DeviceLoop(regionHdl,gDeviceLoopDrawUPP,deviceLoopUserData,0);
 DisposeRgn(regionHdl);
 }
 }
 else if(gColourPickerDemo)
 {
 RGBBackColor(&gBlueColour);
 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);
 doDrawColourPickerChoice();
 }
 else
 {
 RGBBackColor(&gBlueColour);
 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);
 if(gHelpTagsDemo)
 {
 Draw1Control(gBevelButtonControlRef);
 RGBForeColor(&gWhiteColour);
 MoveTo(10,20);
 DrawString("\pHover the cursor in the window, and over the bevel button, ");
 DrawString("\puntil the Help tag appears.");
 MoveTo(10,35);
 DrawString("\pPress the Command key to invoke the maximum content.");
 MoveTo(10,50);
 DrawString("\pDrag the window to a new location.");
 }
 }
 result = noErr;
 break;

Miscellany Version 1.0 25-21

 case kEventWindowGetIdealSize:
 GetAvailableWindowPositioningBounds(GetMainDevice(),&positioningBounds);
 idealHeightAndWidth.v = positioningBounds.bottom;
 idealHeightAndWidth.h = positioningBounds.right;
 SetEventParameter(eventRef,kEventParamDimensions,typeQDPoint,
 sizeof(idealHeightAndWidth),&idealHeightAndWidth);
 result = noErr;
 break;

 case kEventWindowGetMinimumSize:
 minimumHeightAndWidth.v = 302;
 minimumHeightAndWidth.h = 445;
 SetEventParameter(eventRef,kEventParamDimensions,typeQDPoint,
 sizeof(minimumHeightAndWidth),&minimumHeightAndWidth);
 result = noErr;
 break;

 case kEventWindowBoundsChanged:
 doHelpTagWindow();
 GetWindowPortBounds(windowRef,&portRect);
 InvalWindowRect(windowRef,&portRect);
 result = noErr;
 break;
 }
 break;
 }

 return result;
}

// ** doMenuChoice

void doMenuChoice(MenuID menuID,MenuItemIndex menuItem)
{
 Rect portRect;

 if(menuID == 0)
 return;

 switch(menuID)
 {
 case mAppleApplication:
 if(menuItem == iAbout)
 SysBeep(10);
 break;

 case mDemonstration:
 gMultiMonitorsDrawDemo = gColourPickerDemo = gHelpTagsDemo = false;
 if(HMAreHelpTagsDisplayed)
 HMSetHelpTagsDisplayed(false);
 HideControl(gBevelButtonControlRef);
 GetWindowPortBounds(gWindowRef,&portRect);

 switch(menuItem)
 {
 case iNotification:
 RGBBackColor(&gBlueColour);
 EraseRect(&portRect);
 doSetUpNotification();
 break;

 case iProgress:
 RGBBackColor(&gBlueColour);
 EraseRect(&portRect);
 doProgressBar();
 break;

 case iColourPicker:

25-22 Version 1.0 Miscellany

 gColourPickerDemo = true;
 doColourPicker();
 break;

 case iMultiMonitors:
 gMultiMonitorsDrawDemo = true;
 InvalWindowRect(gWindowRef,&portRect);
 break;

 case iHelpTag:
 gHelpTagsDemo = true;
 InvalWindowRect(gWindowRef,&portRect);
 ShowControl(gBevelButtonControlRef);
 HMSetHelpTagsDisplayed(true);
 break;
 }

 break;
 }
}

// ***
// Notification.c
// ***

#include "Miscellany.h"

// …… global variables

NMRec gNotificationStructure;
long gStartingTickCount;
Boolean gNotificationDemoInvoked;
Boolean gNotificationInQueue;
extern WindowRef gWindowRef;
extern ProcessSerialNumber gProcessSerNum;
extern RGBColor gWhiteColour;
extern RGBColor gBlueColour;

// *** doSetUpNotification

void doSetUpNotification(void)
{
 doPrepareNotificationStructure();
 gNotificationDemoInvoked = true;

 gStartingTickCount = TickCount();

 RGBForeColor(&gWhiteColour);
 MoveTo(10,279);
 DrawString("\pPlease click on the desktop now to make the Finder ");
 DrawString("\pthe frontmost application.");
 MoveTo(10,292);
 DrawString("\p(This application will post a notification 10 seconds from now.)");
}

// ** doPrepareNotificationStructure

void doPrepareNotificationStructure(void)
{
 Handle iconSuiteHdl;
 Handle soundHdl;
 StringHandle stringHdl;

 GetIconSuite(&iconSuiteHdl,rIconFamily,kSelectorAllSmallData);
 soundHdl = GetResource('snd ',rBarkSound);
 stringHdl = GetString(rString);

 gNotificationStructure.qType = nmType;
 gNotificationStructure.nmMark = 1;

Miscellany Version 1.0 25-23

 gNotificationStructure.nmIcon = iconSuiteHdl;
 gNotificationStructure.nmSound = soundHdl;
 gNotificationStructure.nmStr = *stringHdl;
 gNotificationStructure.nmResp = NULL;
 gNotificationStructure.nmRefCon = 0;
}

// ** doIdle

void doIdle(void)
{
 ProcessSerialNumber frontProcessSerNum;
 Boolean isSameProcess;
 Rect portRect;

 if(gNotificationDemoInvoked)
 {
 if(TickCount() > gStartingTickCount + 600)
 {
 GetFrontProcess(&frontProcessSerNum);
 SameProcess(&frontProcessSerNum,&gProcessSerNum,&isSameProcess);

 if(!isSameProcess)
 {
 NMInstall(&gNotificationStructure);
 gNotificationDemoInvoked = false;
 gNotificationInQueue = true;
 }
 else
 {
 doDisplayMessageToUser();
 gNotificationDemoInvoked = false;
 }

 GetWindowPortBounds(gWindowRef,&portRect);
 EraseRect(&portRect);
 }
 }
}

// ** doDisplayMessageToUser

void doDisplayMessageToUser(void)
{
 Rect portRect;
 AlertStdAlertParamRec paramRec;
 Str255 labelText;
 Str255 narrativeText;
 SInt16 itemHit;

 if(gNotificationInQueue)
 {
 NMRemove(&gNotificationStructure);
 gNotificationInQueue = false;
 }

 GetWindowPortBounds(gWindowRef,&portRect);
 EraseRect(&portRect);

 paramRec.movable = true;
 paramRec.helpButton = false;
 paramRec.filterProc = NULL;
 paramRec.defaultText = (StringPtr) kAlertDefaultOKText;
 paramRec.cancelText = NULL;
 paramRec.otherText = NULL;
 paramRec.defaultButton = kAlertStdAlertOKButton;
 paramRec.cancelButton = 0;
 paramRec.position = kWindowDefaultPosition;

25-24 Version 1.0 Miscellany

 GetIndString(labelText,rAlertStrings,indexLabel);
 GetIndString(narrativeText,rAlertStrings,indexNarrative);

 StandardAlert(kAlertNoteAlert,labelText,narrativeText,¶mRec,&itemHit);

 DisposeIconSuite(gNotificationStructure.nmIcon,false);
 ReleaseResource(gNotificationStructure.nmSound);
 ReleaseResource((Handle) gNotificationStructure.nmStr);
}

// ***
// ProgressIndicator.c
// ***

#include "Miscellany.h"

// …… global variables

extern WindowRef gWindowRef;
extern RGBColor gWhiteColour;

// *** doProgressBar

void doProgressBar(void)
{
 DialogRef dialogRef;
 RgnHandle visRegionHdl = NewRgn();
 ControlRef progressBarRef;
 SInt16 statusMax, statusCurrent;
 SInt16 a, b, c;
 Handle soundHdl;
 Rect portRect, theRect;
 RGBColor redColour = { 0xFFFF, 0x0000, 0x0000 };

 if(!(dialogRef = GetNewDialog(rDialog,NULL,(WindowRef) -1)))
 ExitToShell();

 SetPortDialogPort(dialogRef);
 GetPortVisibleRegion(GetWindowPort(GetDialogWindow(dialogRef)),visRegionHdl);
 UpdateControls(GetDialogWindow(dialogRef),visRegionHdl);
 QDFlushPortBuffer(GetDialogPort(dialogRef),NULL);

 SetPortWindowPort(gWindowRef);
 GetWindowPortBounds(gWindowRef,&portRect);

 GetDialogItemAsControl(dialogRef,iProgressIndicator,&progressBarRef);

 statusMax = 3456;
 statusCurrent = 0;
 SetControlMaximum(progressBarRef,statusMax);

 for(a=0;a<9;a++)
 {
 for(b=8;b<423;b+=18)
 {
 for(c=8;c<286;c+=18)
 {
 if(CheckEventQueueForUserCancel())
 {
 soundHdl = GetResource('snd ',rBarkSound);
 SndPlay(NULL,(SndListHandle) soundHdl,false);
 ReleaseResource(soundHdl);
 DisposeDialog(dialogRef);

 EraseRect(&portRect);
 MoveTo(10,292);
 RGBForeColor(&gWhiteColour);
 DrawString("\pOperation cancelled at user request");

Miscellany Version 1.0 25-25

 return;
 }

 SetRect(&theRect,b+a,c+a,b+17-a,c+17-a);
 if(a < 3) RGBForeColor(&gWhiteColour);
 else if(a > 2 && a < 6) RGBForeColor(&redColour);
 else if(a > 5) RGBForeColor(&gWhiteColour);
 FrameRect(&theRect);

 QDFlushPortBuffer(GetWindowPort(gWindowRef),NULL);
 QDFlushPortBuffer(GetDialogPort(dialogRef),NULL);

 SetControlValue(progressBarRef,statusCurrent++);
 }
 }
 }

 DisposeRgn(visRegionHdl);
 DisposeDialog(dialogRef);
 EraseRect(&portRect);
 MoveTo(10,292);
 RGBForeColor(&gWhiteColour);
 DrawString("\pOperation completed");
}

// ***
// ColourPicker.c
// ***

#include "Miscellany.h"

// …… global variables

RGBColor gInColour = { 0xCCCC, 0x0000, 0x0000 };
RGBColor gOutColour;
Boolean gColorPickerButton;
extern WindowRef gWindowRef;
extern RGBColor gWhiteColour;
extern RGBColor gBlueColour;

// ** doColourPicker

void doColourPicker(void)
{
 Rect portRect, theRect;
 Point where;
 Str255 prompt = "\pChoose a rectangle colour:";

 GetWindowPortBounds(gWindowRef,&portRect);
 theRect = portRect;

 RGBBackColor(&gBlueColour);
 EraseRect(&theRect);
 InsetRect(&theRect,55,55);
 RGBForeColor(&gInColour);
 PaintRect(&theRect);

 where.v = where.h = 0;

 gColorPickerButton = GetColor(where,prompt,&gInColour,&gOutColour);

 InvalWindowRect(gWindowRef,&portRect);
}

// *** doDrawColorPickerChoice

void doDrawColourPickerChoice(void)
{
 Rect portRect;

25-26 Version 1.0 Miscellany

 char *cString;

 GetWindowPortBounds(gWindowRef,&portRect);
 InsetRect(&portRect,55,55);

 if(gColorPickerButton)
 {
 RGBForeColor(&gOutColour);
 PaintRect(&portRect);

 RGBForeColor(&gWhiteColour);

 MoveTo(55,22);
 DrawString("\pRequested Red Value: ");
 cString = doDecimalToHexadecimal(gOutColour.red);
 MoveTo(170,22);
 DrawText(cString,0,6);

 MoveTo(55,35);
 DrawString("\pRequested Green Value: ");
 cString = doDecimalToHexadecimal(gOutColour.green);
 MoveTo(170,35);
 DrawText(cString,0,6);

 MoveTo(55,48);
 DrawString("\pRequested Blue Value: ");
 cString = doDecimalToHexadecimal(gOutColour.blue);
 MoveTo(170,48);
 DrawText(cString,0,6);
 }
 else
 {
 RGBForeColor(&gInColour);
 PaintRect(&portRect);

 RGBForeColor(&gWhiteColour);
 MoveTo(55,48);
 DrawString("\pCancel button was clicked.");
 }
}

// ** doDecimalToHexadecimal

char *doDecimalToHexadecimal(UInt16 decimalNumber)
{
 static char cString[] = "0xXXXX";
 char *hexCharas = "0123456789ABCDEF";
 SInt16 a;

 for (a=0;a<4;decimalNumber >>= 4,++a)
 cString[5 - a] = hexCharas[decimalNumber & 0xF];

 return cString;
}

// ***
// MultiMonitor.c
// ***

#include "Miscellany.h"

// ** deviceLoopDraw

void deviceLoopDraw(SInt16 depth,SInt16 deviceFlags,GDHandle targetDeviceHdl,SInt32 userData)
{
 RGBColor oldForeColour;
 WindowRef windowRef;
 Rect portRect;
 RGBColor greenColour = { 0x0000, 0xAAAA, 0x1111 };

Miscellany Version 1.0 25-27

 RGBColor redColour = { 0xAAAA, 0x4444, 0x3333 };
 RGBColor blueColour = { 0x5555, 0x4444, 0xFFFF };
 RGBColor ltGrayColour = { 0xDDDD, 0xDDDD, 0xDDDD };
 RGBColor grayColour = { 0x9999, 0x9999, 0x9999 };
 RGBColor dkGrayColour = { 0x4444, 0x4444, 0x4444 };

 GetForeColor(&oldForeColour);

 windowRef = (WindowRef) userData;
 GetWindowPortBounds(windowRef,&portRect);
 EraseRect(&portRect);

 if(((1 << gdDevType) & deviceFlags) != 0)
 {
 InsetRect(&portRect,50,50);
 RGBForeColor(&greenColour);
 PaintRect(&portRect);
 InsetRect(&portRect,40,40);
 RGBForeColor(&redColour);
 PaintRect(&portRect);
 InsetRect(&portRect,40,40);
 RGBForeColor(&blueColour);
 PaintRect(&portRect);
 }
 else
 {
 InsetRect(&portRect,50,50);
 RGBForeColor(<GrayColour);
 PaintRect(&portRect);
 InsetRect(&portRect,40,40);
 RGBForeColor(&grayColour);
 PaintRect(&portRect);
 InsetRect(&portRect,40,40);
 RGBForeColor(&dkGrayColour);
 PaintRect(&portRect);
 }

 RGBForeColor(&oldForeColour);
}

// ***
// HelpTag.c
// ***

#include "Miscellany.h"
#include <string.h>

// …… global variables

extern ControlRef gBevelButtonControlRef;
extern WindowRef gWindowRef;

// …… doHelpTagControl

void doHelpTagControl(void)
{
 HMHelpContentRec helpContent;

 memset(&helpContent,0,sizeof(helpContent));
 HMSetTagDelay(50);

 helpContent.version = kMacHelpVersion;
 helpContent.tagSide = kHMOutsideBottomLeftAligned;

 helpContent.content[kHMMinimumContentIndex].contentType = kHMStringResContent;
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmResID = 129;
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 1;
 helpContent.content[kHMMaximumContentIndex].contentType = kHMStringResContent;
 helpContent.content[kHMMaximumContentIndex].u.tagStringRes.hmmResID = 129;

25-28 Version 1.0 Miscellany

 helpContent.content[kHMMaximumContentIndex].u.tagStringRes.hmmIndex = 2;

 HMSetControlHelpContent(gBevelButtonControlRef,&helpContent);
}

// ……… doHelpTagWindow

void doHelpTagWindow(void)
{
 Rect hotRect;
 HMHelpContentRec helpContent;

 memset(&helpContent,0,sizeof(helpContent));
 HMSetTagDelay(500);

 helpContent.version = kMacHelpVersion;
 helpContent.tagSide = kHMOutsideRightCenterAligned;

 GetWindowPortBounds(gWindowRef,&hotRect);
 LocalToGlobal(&topLeft(hotRect));
 LocalToGlobal(&botRight(hotRect));
 helpContent.absHotRect = hotRect;

 helpContent.content[kHMMinimumContentIndex].contentType = kHMStringResContent;
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmResID = 129;
 helpContent.content[kHMMinimumContentIndex].u.tagStringRes.hmmIndex = 3;
 helpContent.content[kHMMaximumContentIndex].contentType = kHMStringResContent;
 helpContent.content[kHMMaximumContentIndex].u.tagStringRes.hmmResID = 129;
 helpContent.content[kHMMaximumContentIndex].u.tagStringRes.hmmIndex = 4;

 HMSetWindowHelpContent(gWindowRef,&helpContent);
}

// ***

Miscellany Version 1.0 25-29

Demonstration Program Miscellany Comments
When this program is run, the user should make choices from the Demonstration menu, taking the following
actions and making the following observations:

• Choose the Notification item and, observing the instructions in the window, click the desktop
immediately to make the Finder the foreground application. A notification will be posted by Miscellany
about 10 seconds after the Notification item choice is made. Note that, when about 10 seconds have
elapsed, the Notification Manager invokes an alert (Mac OS 8.6), floating window (Mac OS 9.x), or
system movable modal alert (Mac OS X) and alternates the Finder and Miscellany icons in the OS 8/9
Application menu title. Observing the instructions in the alert/floating window/system movable modal
alert:

• Dismiss the alert (Mac OS 8.6 only).

• On Mac OS 8/9, then choose the Miscellany item in the OS 8/9 Application menu, noting the ♦ mark to
the left of the item name. When Miscellany comes to the foreground, note that the icon alternation
concludes and that an alert (invoked by Miscellany) appears. Dismiss this second alert.

• On Mac OS X, click on the application's icon in the Dock.

• Choose the Notification item again and, this time, leave Miscellany in the foreground. Note that only
the alert invoked by Miscellany appears on this occasion.

• Choose the Notification item again and, this time, click on the desktop and then in the Miscellany
window before 10 seconds elapse. Note again that only the alert invoked by Miscellany appears.

• Choose the Determinate Progress Indicator item, noting that the progress indicator dialog is
automatically disposed of when the (simulated) time-consuming task concludes.

• Choose the Determinate Progress Indicator item again, and this time press the Command-period key
combination before the (simulated) time-consuming task concludes. Note that the progress indicator
dialog is disposed of when the Command-period key combination is pressed.

• Choose the Colour Picker item and make colour choices using the various available modes. Note that,
when the Colour Picker is dismissed by clicking the OK button, the requested RGB colour values for the
chosen colour are displayed in hexadecimal, together with a rectangle in that colour, in the Miscellany
window.

• Choose the Multiple Monitors Draw item, noting that the drawing of the simple demonstration image is
optimised as follows:

• On a monitor set to display 256 or more colours, the image is drawn in three distinct colours. The
luminance of the three colours is identical, meaning that, if these colours are drawn on a grayscale
screen, they will all appear in the same shade of gray.

• On a monitor set to display 256 shades of gray, the image is drawn in three distinct shades of gray.

• Choose the Help Tags item, hover the cursor over the window and, when the Help tag appears, press the
Command key to observe the maximum content version of the tag. Repeat this while hovering the cursor
over the bevel button control.

Miscellany.c

Global Variables
gDeviceLoopDrawUPP will be assigned a universal procedure pointer to the image-optimising drawing function
deviceLoopDraw called by DeviceLoop. gProcessSerNum will be assigned the process serial number of the
Miscellany application.

main
The call to NewDeviceLoopDrawingProc creates a universal procedure pointer to the image-optimising drawing
function deviceLoopDraw.

A timer is installed and set to fire every one second. When it fires, the function doIdle is called.

25-30 Version 1.0 Miscellany

A bevel button control is created, following which the calls to doHelpTagControl and doHelpTagWindow
create Help tags for the bevel button control and the window. HMSetHelpTagsDisplayed is called to disable
the tags until the Help Tags item is chosen from the Demonstration menu.

GetCurrentProcess gets the process serial number of this process. The timer and the process serial number
are used in the notification demonstration.

appEventHandler
When the kEventAppActivated event type is received, if the global variable gNotificationInQueue is set to
true, doDisplayMessageToUser is called. This is part of the notification demonstration.

windowEventHandler
When the kEventWindowDrawContent event type is received, if the Multiple Monitors Draw item in the
Demonstration menu has been chosen (gMultiMonitorsDrawDemo is true), a call is made to DeviceLoop and the
universal procedure pointer to the application-defined (callback) drawing function deviceLoopDraw is
passed as the second parameter.

doMenuChoice
When the Multiple Monitors Draw item in the Demonstration menu is chosen, the window's port rectangle is
invalidated so as to force a kEventWindowDrawContent event and consequential call to DeviceLoop.

Notification.c

doSetUpNotification
doSetUpNotification is called when the user chooses Notification from the Demonstration menu.

The first line calls doPrepareNotificationStructure, which fills in the relevant fields of a notification
structure. The next line assigns true to a global variable which records that the Notification item has
been chosen by the user.

The next line saves the system tick count at the time that the user chose the Notification item. This
value is used later to determine when 10 seconds have elapsed following the execution of this line.

doPrepareNotificationStructure
doPrepareNotificationStructure fills in the relevant fields of the notification structure.

First, however, GetIconSuite creates an icon suite based on the specified resource ID and the third
parameter, which limits the suite to 'ics#', 'ics4' and 'ics8' icons. The GetIconSuite call returns the
handle to the suite in its first parameter. The call to GetResource loads the specified 'snd ' resource.
GetString loads the specified 'STR ' resource.

The first line of the main block specifies the type of operating system queue. The next line specifies
that the ♦ mark is to appear next to the application's name in the Mac OS 8/9 Application menu. The next
three lines assign the icon suite (for Mac OS 8/9), sound (for Mac OS 8/9) and string handles previously
obtained. The next line specifies that no response function is required to be executed when the
notification is posted.

doIdle
doIdle is called when the installed timer fires.

If the user has not just chosen the Notification item in the Demonstration menu (gNotificationDemoInvoked
is false), doIdle simply returns immediately.

If, however, that item has just been chosen, and if 10 seconds (600 ticks) have elapsed since that choice
was made, the following occurs:

• The calls to GetFrontProcess and SameProcess determine whether the current foreground process is
Miscellany. If it is not, the notification request is installed in the notification queue by NMInstall
and the global variable gNotificationInQueue is set to indicate that a request has been placed in the
queue by Miscellany. (This latter causes doDisplayMessageToUser to be called when the
kEventAppActivated event is received. doDisplayMessageToUser removes the notification request from the
queue and has Miscellany convey the required message to the user.) Also, gNotificationDemoInvoked is
set to false so as to ensure that the main if block only executes once after the Notification item is
chosen.

• If, however, the current foreground process is Miscellany, the function doDisplayMessageToUser is
called to present the required message to the user in the normal way. Once again

Miscellany Version 1.0 25-31

gNotificationDemoInvoked is reset to false so as to ensure that the main if block only executes once
after the Notification item is chosen.

doDisplayMessageToUser
doDisplayMessageToUser is called by appEventHandler and doIdle in the circumstances previously described.

If a Miscellany notification request is in the queue, NMRemove removes it from the queue and
gNotificationInQueue is set to false to reflect this condition. (Recall that, if the nmResp field of the
notification structure is not assigned -1, the application itself must remove the queue element from the
queue.)

Regardless of whether there was a notification in the queue or not, Miscellany then presents its alert.
When the alert is dismissed, the notification's icon suite, sound and string resources are
released/disposed of.

ProgressBar.c

doProgressBar
doProgressBar is called when the user chooses Determinate Progress Indicator from the Demonstration menu.

GetNewDialog creates a modal dialog. The call to GetDialogItemAsControl retrieves the dialog's progress
indicator control. SetControlMaximum sets the control's maximum value to equate to the number of steps in
a simulated time-consuming task.

The main for loop performs the simulated time-consuming task, represented to the user by the drawing of a
large number of coloured rectangles in the window. The task involves 3456 calls to FrameRect.

Within the inner for loop, CheckEventQueueForCancel is called to check whether the user has pressed the
Command-period key. If so, a 'snd ' resource is loaded, played, and released, the dialog is disposed of,
an advisory message in drawn in the window, and the function returns.

Each time round around the inner for loop, a progress indicator control's value is incremented.

When the outer for loop exits (that is, when the Command-period key combination is not pressed before the
simulated time-consuming task completes), the dialog is disposed of.

ColourPicker.c

doColourPicker
doColourPicker is called when the user chooses Colour Picker from the Demonstration menu.

The first block erases the window's content area and paints a rectangle in the colour that will be passed
in GetColor's inColor parameter.

The next line assigns 0 to the fields of the Point variable to be passed in GetColor's where parameter.
((0,0) will cause the Colour Picker dialog to be centred on the main screen.)

The call to GetColor displays the Colour Picker's dialog. GetColor retains control until the user clicks
either the OK button or the Cancel button, at which time the port rectangle is invalidated, causing the
function doDrawColourPickerChoice to be called.

doDrawColourPickerChoice
If the user clicked the OK button, a filled rectangle is painted in the window in the colour returned in
GetColor's outColor parameter, and the values representing the red, green, and blue components of this
colour are displayed at the top of the window in hexadecimal. Note that the function
doDecimalToHexadecimal is called to convert the decimal (UInt32) values in the fields of the RGBColor
variable outColor to hexadecimal.

If the user clicks the Cancel button, a filled rectangle is painted in the window in the colour passed in
GetColor's inColor parameter.

doDecimalToHexadecimal
doDecimalToHexadecimal converts a UInt16 value to a hexadecimal string.

25-32 Version 1.0 Miscellany

MultiMonitor.c

deviceLoopDraw
deviceLoopDraw is the image-optimising drawing function the universal procedure pointer to which is passed
in the second parameter in the DeviceLoop call. (Recall that the DeviceLoop call is made whenever the
Multiple Monitors Draw item in the Demonstration menu has been selected and an kEventDrawContent event
type is received.) DeviceLoop scans all active video devices, calling deviceLoopDraw whenever it
encounters a device which intersects the drawing region, and passing certain information to
deviceLoopDraw.

The second line casts the SInt32 value received in the userData parameter to a WindowRef. The window's
content area is then erased.

If an examination of the device's attributes, as received in the deviceFlags formal parameter, reveals
that the device is a colour device, three rectangles are painted in the window in three different colours.
(The luminance value of these colours is the same, meaning that the rectangles would all be the same shade
of gray if they were drawn on a monochrome (grayscale) device.)

If the examination of the device's attributes reveals that the device is a monochrome device, the
rectangles are painted in three distinct shades of gray.

HelpTag.c

doHelpTagControl and doHelpTagWindow
doHelpTagControl and doHelpTagWindow create Help tags for the bevel button control and the window.

The call to memset clears the specified block of memory. The call to HMSetTagDelay sets the delay, in
milliseconds, before the tag opens.

For the bevel button, the tagSide field of the HMHelpContentRec structure is assigned a value which will
cause the control's tag to be displayed below the control with its left side aligned with the left side of
the button. For the window, the tagSide field is assigned a value which will cause the control's tag to
be displayed on the window's right, centered vertically.

The main block sets the content type and retrieves and assigns the minimum and maximum content strings
from a 'STR#' resource. The calls to HMSetControlHelpContent and HMSetWindowHelpContent install the Help
tags on the control and window.

	Notification From Applications in the Background
	The Need for the Notification Manager
	Elements of a Notification
	Notifications in Action
	Overview
	Creating a Notification Request
	The Notification Structure
	Field Descriptions:

	Installing a Notification Request
	Removing a Notification Request

	Progress Bars and Scanning for Command-Period Key-Down Events and Mouse-Down Events
	Progress Bars
	Scanning for Command-Period Key-Down Events

	Soliciting a Colour Choice From the User — The Color Picker
	Preamble - Colour Models
	RGB Model
	CYMK Model
	HLS and HSV Models

	The Color Picker
	Using the Color Picker RGB Mode
	Using the Color Picker in HSV Mode
	Invoking the Color Picker

	Coping With Multiple Monitors
	Overview
	Video Devices Revisited

	Requirements of the Application
	Image Optimisation
	Other Requirements — Classic Event Model Applications

	Constraining a Window to One Screen

	Help Tags
	Human Interface Guidelines
	Creating Help Tags
	Data Types
	Constants
	Help Tags for Windows
	Help Tags for Menus

	Setting the Delay Before Tag Display
	Enabling and Disabling Help Tags

	Ensuring Compatibility with the Operating Environment
	Getting Operating Environment Information - The Gestalt Function
	Gestalt Selectors
	Gestalt Responses
	Using Gestalt — Examples

	Carbon and Available APIs
	CarbonLib and the Underlying Mac OS 8/9 System Software
	Interpreting Universal Headers Comments
	T-Vector Tests

	Main Notification Manager Data Types and Functions
	Relevant Process Manager Data Types and Functions
	Relevant Event Manager Function
	Relevant Color Picker Utilities Function
	Relevant QuickDraw Function
	Relevant Window Manager Function
	Main Help Package Constants, Data Types, and Functions
	Relevant Gestalt Manager Function
	Demonstration Program Miscellany Listing
	Demonstration Program Miscellany Comments

